Posted by **joe** on Monday, December 7, 2009 at 9:41am.

The actual span of the base of the dome is 143 feet.

1) Use cylindrical coordinates to write the surface of the dome as a function of the

distance from the center of the base; that is find z = f (r) .

2) Use your function to find the height of the dome; that is what is f (0) ?

3) Find the volume of the inside of the dome.

4) Assume the density is one, that is

P(r,"theta",z)=1 :

a. Find the moment around the x-y plane.

b. Use 3) and a) above to find the center of mass for the dome.

5) The density of the sides decreases as the dome gets higher. Assume that the

density is P(r,"theta",z)=k∗(f(0)−z) where k is a constant.

a. Find the mass of the dome.

b. Find the moment around the x-y plane.

c. Find the center of mass of the dome.

- Calc 3 -
**MathMate**, Monday, December 7, 2009 at 1:13pm
The word dome suggests that it is hollow. However, question 4b suggests using the previously calculated volume to calculate centre of mass would imply that the "dome" refers to a solid, or rather a hemisphere. The remaining calculations will be based on a solid hemisphere.

Actual "span" = 143 ft.

Radius, R = 143/2=71.5 ft.

A general point on the surface of the dome in cylindrical coordinates would be P(r, θ, z), where z is the vertical axis, and the r-θ plane corresponds to the x-y plane.

1.

z = f(r) = √(R²-r²)

2. height of dome, H

H = f(0) = √(R²-0²)

=R

3. Volume

The volume can be found by integrating thin slices over the height of the dome. In order to do so, we must express the radius of the dome as a function of z, i.e.

from z=f(r)=√(R²-r²), we obtain

r=f(z)=√(R²-z²)

(Side note: the inverse of f(r) equals f(z) by the fact that the first quadrant of the dome is symmetrical with respect to the line y=x)

Volume

=∫πr²dz

=∫π(R²-z²)dz

=2πR³/3 [z from 0 to R]

4. Uniform density, ρ(r,θ,z)=1

a. Moment

If we subdivide the dome/hemisphere into thin horizontal slices, the moment about the x-y plane would be the mass of each slice multiplied by the distance from the plane.

Moment

=∫ ρzdV

=∫ ρz*πr²dz

=ρ ∫ z*π(R²-z²)dz

=ρπR⁴/4

4b. Centre of mass, ρ=1

Centre of mass, z̄

=moment/volume

=3R/8

5. &rho(r,θ,z)=k(R-z)

5a. mass

Mass

=∫ ρdV

=∫ k(R-z)*πr²dz

=5πkR⁴/12

5b. Moment

The moment can again be calculated by multiplying the elemental disk by the distance from the x-y plane:

moment = ∫ ρz dV

=7πkR5/60

5c. Centre of mass

z̄

= moment/mass

= 7R/25

Check:

7R/25 = 0.28R < 3R/8 = 0.375R

This checks since the density is higher near the bottom.

## Answer this Question

## Related Questions

- Science: Physics - A spherical metal dome of radius 15 cm is electrically ...
- AP Calc - The picture to the right shows the Ben Franklin Bridge which stretches...
- math - the dome over a town hall has a parabolic shape. the dome measures 48 m ...
- AP Calculus AB - Please Help! Thank you! An observatory is to be in the form of ...
- Calculus - Find the force on a hollow dome that is 1000 feet in diameter, that ...
- Math - Charlie is making a toy silo for his children. The silos height is three ...
- Physics(IMPORTANT) - A small object of mass m= 90 kg slides down a spherical ...
- physics - A particle of mass m is released from rest at the top of a spherical ...
- Math - For a history project, Marcus built a replica of the Texas State Capitol ...
- physics - The dome of a Van de Graaff generator has a diameter of 32.0 cm and is...

More Related Questions