Posted by Anonymous on Sunday, November 22, 2009 at 1:11pm.
Determine all solutions in the interval
x is all real numbers , [0, 2 pi]
using a trigonometric identify
2cos^2x + sinx  1 = 0

Advanced Functions  Reiny, Sunday, November 22, 2009 at 4:33pm
2cos^2x + sinx  1 = 0
2(1  sin^2x) + sinx  1 = 0
2  2sin^2x + sinx  1 = 
2sin^2x  sinx 1 = 0
(2sinx + 1)(sinx  1) = 0
sinx = 1/2 or sinx = 1
from sinx = 1/2, x = pi + pi/6 or 2pi  pi/6
x = 7pi/6 radians or 11pi/6 radians ,
(210º or 330º)
from sinx = 1, x = pi/4 radians, (90º)
Answer This Question
Related Questions
 Advanced Functions  Determine the solutions for: (cos x)/(1 + sinx) + (1 + sinx...
 advanced functions  Determine approximate solutions for this equation in the ...
 math  the problem is 2cos^2x + sinx1=0 the directions are to "use an identity ...
 Trigonometry  Find all solutions on the interval (0,2pi): 22cos^2=sinx+1
 Precalculus  Please help!!!!!!!!!!! Find all solutions to the equation in the ...
 precal  identify all solutions in the interval [0,2pi]: cos (2x) csc^2x=2cos(2x...
 trigonometry  Find all solutions on the interval [0.2pi) A) 3sin(t)=15cos(t)...
 Math  cos x = 0.6 , 0 <= theta <= 2pi Use inverse trigonometric ...
 math  describe the solutions of 4<or=n+2 mult. choice a all real numbers ...
 Trigonometry  27. Solve for all radian solutions. sinx = −2cos x
More Related Questions