Saturday

September 20, 2014

September 20, 2014

Posted by **TrickyEcon** on Wednesday, July 15, 2009 at 9:14pm.

Capital runs by 10's to 100 on the left-vertically and Labor runs by 2's to 20 horizontally

The production engineers at Impact Industries have derived the expansion path shown in the following figure described above. The price of labor is $100 per unit.

A.) What price does Impact Industries pay for capital?

B.) If the manager at Impact decides to produce 180 units of output, how much labor and capital should be used in order to minimize total costs?

C.) What is the total cost of producing 120, 180 and 240 units of output in the long run?

D.) Impact Industries originally built the plant (i.e. purchased the amount of capital) designed to produce 180 units operatimally. In the short run with capital fixed, if the manager decides to expand production to 240 units, what is the amount of labor and capital that will be used? (Hint: How must the firm expand output in the short run when capital is fixed?)

E.) Given your answer to part d, calculate the average variable, average fixed, and average total cost in the short run.

Can you help Economyst?

- Economics -
**economyst**, Thursday, July 16, 2009 at 10:35amok,I think I understand your graph description.

The three curves are isoquants, showing the mix of L and C that could be combined to produce a particular level of output. The three straight lines are budget constraints, showing the amounts of L and C that could be used given a fixed budget.

I presume that expansion path line goes exactly through the points where the Isoquant is tangent (touches) the budget constraint. If NO, then I dont understand your graph and my answers are null and void.

A) pick a budget constraint, say the first. The constraint touches the L axis at 8. So, with this constraint, the budget is 8*100 = $800. The constraint touches the C axis at 40. Ergo, price of C is 800/40 = $20

B) On the expansion path where the 180-Isoquat touches the budget constraint; C=40 and L=6

C) At the 180-production total cost is 40*20 + 6*100. = 1400. Repeat for the 120 level and the 240 level.

D) The optimal level of C at 180-production is 40. Draw a horizontal line at C=40. Where does the line hit the 240-Isoquant? This is the amount of L needed to produce output at 240 with C fixed at 40.

E) Variable costs are L*$100, fixed costs are C*$20. Take the L under D. AVC=L*100/240. AFC = (40)*20/240. ATC= ((L*100)+(40*20))/240.

- Economics -
**Candis**, Sunday, October 25, 2009 at 5:39pmI have to say that I like to check my answers with yours before I submit an assignment. You are a wonderful resource for anyone that is unsure about their answers. On this one, I know that it is difficult not having the graph, and you are only using the information that you are given, but just so you, or anyone reading this knows, if you check the graph capital actually hits 180 units of output at 30 units for the optimal level. I would hope that everone that is using your site is checking thier answers, and not just copying from here.

**Answer this Question**

**Related Questions**

Expansion Path Economics - I've been trying to find a solution to this without ...

Managerial Economics - I've been trying to find a solution to this without much ...

Economics - The production engineers at Impact industries have derived the ...

Economics - The chapter is on Production and costs in thelong run, we are given ...

Managerial Economics - What would it mean if an expansion path eventually had a ...

Trig. - 4cosBeta=1+2cosBeta 2cosBeta=1 cosBeta=1/2 60 degrees +/- 180--is this ...

Economics - In the short run a firm needs six units of labor to produce eight ...

Thermochemistry - Path A A sample of gas in a cylinder of volume 3.96 L at 327 K...

AP Chemistry ! - Can you help me with this? If you can, do it as detail as you ...

Math - During the past 6 weeks Sean spent between $12 and $18 for a lunch each ...