Friday
March 24, 2017

Post a New Question

Posted by on Friday, May 22, 2009 at 3:19pm.

The small mass m sliding without friction along the looped track is to remain on the track at all times, even at the very top of the loop of radius r. (not unlike a roller coaster)

A)In terms of the given quantities, determine the minimum release height h. (i got this to be 2.5)

B)If the actual release height is 4h, calculate the normal force exerted by the track at the bottom of the loop.

C)If the actual release height is 3h, calculate the normal force exerted by the track at the top of the loop.

D)If the actual release height is 3h, calculate the normal force exerted by the track after the block exits the loop onto the flat section.

I'm more interested in the equations to use than receiving the answer.

  • physics loop (PLEASE HELP) - , Saturday, May 23, 2009 at 1:22pm

    i can't figure how to set this up. it starts at height h and there's a loop at at ground level with radius r.

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question