Calculus
posted by Riley on .
Find an equation of the line through the point (3,5) that cuts off the least area from the first quadrant.
How do I solve? I am stuck. The only thing I can come with is this:
y5=m(x3)
How to use this I don't know.

draw a line through (3,5) cutting the positive x and y axes at (a,0) and (0,b)
then the area of the triangle is
A = ab/2
but the slope of the two segments must be equal, so 5/(3a) = (b5)/3
solving for b gave me b = 5a/(a3)
then A = 5a^2/(2a6)
using the quotient rule
dA/da = [(2a6)(10a)  5a^2(2)]/(2a6)^2
= 0 for a max/min of A
simplifying the top and setting it equal to zero gave me
a^2  6a = 0
a(a6)=0
a = 0 or a = 6
clearly a=0 does not give me a triangle, so a = 6 and b= 10
so slope = 5/3
and your equation would be
y5 = (5/3)(x3)
take it from there. 
how did you get the slope of the two lines? I get everything else though.

there is only one line
you were given the point (3,5) and I found
the xintercept to be (6,0)
so slope = (50)/(36)
= 5/3 =  5/3