pre. cal.
posted by stephanie on .
Find the least integral upper bound of the zeros of the function f(x) = x^3  x^2 + 1?
I got... The least upper bound of the zeros of f(x) is 0.7549

as you found out, there are no integral zeros of the function.
There is only one real intercept and you found that correctly. (how did you find that anyway ?)
My guess would be that they want the next lowest integer value to that zero, perhaps 1 ??? or is it 0 ??
not sure about the wording though.