Posted by Miranda on Saturday, March 14, 2009 at 5:00pm.
A manufacture has been selling 1750 television sets a week at $540 each. A market survey indicates that for each $14 rebate offered to a buyer, the number of sets sold will increase by 140 per week.
a) Find the function representing the demand p(x), where x is the number of the television sets sold per week and p(x) is the corresponding price.
p(x)=.1x+715
b) How large rebate should the company offer to a buyer, in order to maximize its revenue?
=182.5
c) If the weekly cost function is 157500 + 180 x, how should it set the size of the rebate to maximize its profit?
the answers to A and B are right but i don't know how to do part c, could someone explain how to find part c?

maximizing profit  economyst, Monday, March 16, 2009 at 9:43am
You would solve c) in nearly the same method you used to solve b). Always always always, maximize provits by setting marginal cost (MC) = marginal revenue (MR). MR is the first derivitive of total revenue. Since you got b) right, you probably correctly calculated MR = 715  .2x. (Then you maximized by setting this equal to zero and solving for x  correct??)
For c) set MR = MC. MC is the first derivitive of the Total cost function, so MC is simply 180.
Take it from here. 
maximizing profit  Anonymous, Friday, October 12, 2012 at 9:26pm
how did you get part a