Posted by eliz on Sunday, March 1, 2009 at 5:48pm.
You can change Kp to Kc.
How do you change Kp to Kc?
Kc = Kp(RT)^-delta n where
delta n = n(gas products) - n(gas reactants)
Please check my work?
I first changed Kp to Kc: .900atm(0.0821)(25+273.15)^(2.0 mol*1.0 mol)- (3.0)= 22.03
Than i did an ICE table. I than used the equation Kc= So2Cl2/So2*Cl2. 22.03=(.75+x)/(.5-x)(.25-x). I than solved for x. x=.169 was the only value that worked for x. I than substitued those into the each values to get moles than i changed them into grams of each. for the So2 I go 21.21g, for the Cl2 i got 5.74g and the SO2Cl2 i got 78.41 g. Is the correct way to do this problem?
I didn't check the problem itself. I first checked the conversion of Kp to Kc.
First, you misunderstood the delta n part. The number of moles product n is 1 (its the coefficient, not the moles in the problem) and n for reactants is 2 (1+1)(again, not the values in the problem but the coefficients). Also, you turned it around; it should be products-reactants or 1-2=-1 BUT the good news is that your two errors canceled out and you came out with the right answer of -1. However, you did NOT include R within the parentheses so that makes your 22 incorrect.
I have Kc = Kp(RT)^-1 =
0.9/(0.08205*298.15) = about 0.04 but check my math. The 0.04 needs to be exact and not estimated on my part.
For the problem, you next need to determine which way the reaction is going in order to reach equilibrium.
SO2 + Cl2 ==> SO2Cl2
reaction quotient = (SO2Cl2)/(SO2)(Cl2) =
0.75/(0.5)(0.25) = 6.00
Since 6.00 is so much larger than 0.04, the reaction, as set up, is too far to the right so we know it will be shifting to the left.
Thus SO2 = 0.5+x; Cl2 = 0.25+x; SO2Cl2 = 0.75-x
and go from there.