Thursday

April 24, 2014

April 24, 2014

Posted by **John** on Thursday, February 26, 2009 at 1:41pm.

Pr{D=0}=0.05, Pr{D=1}=0.1,

Pr{D=2}=0.2,Pr{D=3}=0.4,

Pr{D=4}=0.1,Pr{D=5}=0.1,Pr{D=6}=0.05.

Let X be the Markov chain where Xn is the inventory at the end of week n.

a) find transition matrix for X.

b) if at the end of week 1 there are 5 items in inventory, what is the probability that there will be 5 items in inventory at the end of week 3?

**Related Questions**

College Finite Math - Suppose for this problem that Pr[E]=13/24 and Pr[F]=5/8 ...

math probability - Assume that Pr[E]=0.55,Pr[F]=0.55,Pr[G]=0.55,Pr[E∪F]=0....

Math! - In the equation A=p+prt, t is equilvalent to... (1)A-pr (3)A - p ...

math-Probability - Let E and F be events such that the following is true. Pr (E...

math - An experiment consists of rolling a weighted die. The probability of ...

Probability/Statistics - Two independent events, A and B, satisfy Pr(A) = 0.6 ...

MATH - Given Pr(a)= 0.9, Pr(C|A)= 0.78 and Pr(D|B) = 0.38. find a. (A|C) = b. (A...

algebra - This is a response to bobpursley's answer of Pr(0) = .3; Pr(1) = 7*.3...

computer science - calculate the steady state probability of source emitting a "...

Math is this right - Solve for t: I= Prt I/pr = prt/pr I/pr=t