proof:

2/ log a base 9 - 1/ log a base 5 = 3/ log a base 3??

To solve this problem, let's first simplify the expression on the left side of the equation:

2 / log₉(a) - 1 / log₅(a)

To combine these fractions, we need to find a common denominator. The least common denominator (LCD) for log₉(a) and log₅(a) is log₉(a) * log₅(a). Therefore:

(2 * log₅(a)) / (log₉(a) * log₅(a)) - (1 * log₉(a)) / (log₉(a) * log₅(a))

Now, we can subtract the fractions:

(2 * log₅(a) - log₉(a)) / (log₉(a) * log₅(a))

To simplify the denominator, we can use the property of logarithms that states logₐ(b) = 1 / log_b(a):

(2 * log₅(a) - log₉(a)) / (1 / log₉₅(a))

Now, let's simplify the numerator further by using the change-of-base formula:

log₅(a) = log₉(a) / log₉(5)

Substituting this into the numerator:

(2 * log₉(a) - log₉(a)) / (1 / log₉₅(a))

= log₉(a) / (1 / log₉₅(a))

= log₉(a) * log₉₅(a)

Now, the expression becomes:

log₉(a) * log₉₅(a) / (1 / log₉₅(a))

To combine the fractions, we use the property logₐ(b) * log_b(a) = 1:

log₉(a) * log₉₅(a) * log₉₅(a)

And finally, using the property logₐ(a) = 1:

log₉(a)

Therefore, we have shown that:

2 / log₉(a) - 1 / log₅(a) = log₉(a)

So, 2 / logₐ(9) - 1 / logₐ(5) is equivalent to 3 / logₐ(3).