# math

posted by on .

Find the limit of the function:
(tanp)(x-1)/(tanq)(x-1)
as x approaches 1. We're hinted at using the result that sinx/x = 1 as x approaches 0.
Im not sure how we go abt doing this qs.

• do not understand question - ,

as written the answer is simply tanp/tanq

what is tanp?
what is tanq ?
what is p and what is q ?

Does this mean tan (px - p) / tan (qx - q)? or something?

• math - ,

tanp and tanq is short for tangent p and tangent q respectively(we havent been told where p is a variable or constant; same goes for q)

no it doesnt mean tan (px - p)
it wud be xtanp -tanp if u were to multiply it through ..same for denominator

and the answer given is p/q

• math - ,

(xtanp-tanP)/(xtanq-tanq) as x approachtes zero.

Unless p,q are somehow related to x, it is not equal to p/q.

• math - ,

to get p/q, it looks like somebody canceled the "tan"

reminded me of the time when one of my students gave this solution to
Lim (sinx)/x as x = 0
= sin

I told him to sin no more, but he didn't get it.