Posted by Mischa on Thursday, November 20, 2008 at 12:57am.
A car moves with speed v on a horizontal circular track of radius R. The height of the car's center of mass is h, and the separation between the inner and outer wheels is d. The road is dry, and the car does not skid. Find the maximum speed the car can have without overturning.

physics  Damon, Thursday, November 20, 2008 at 1:53am
acceleration = v^2/R
side force = m v^2/R
overturning moment = m v^2 h/R
righting moment = m g d/2
so
m g d/2 = m v^2 h/R
v^2 = g d R /(2h)
v = sqrt [ g d R / (2 h) ]

physics  drwls, Thursday, November 20, 2008 at 1:55am
Consider the moment about the wheels farthest from the center of the track. If the car is about to top over, there will be no weight or friction force on the inside wheels.
Imageine that you al=re lookng at the car headon and considere the moments acting on it.
The moment due to the car's weight
M g d/2 will be equal to the oppositely directed moment due to the centripetal force acting through the center of mass,
M V^2 h/R
Therefore V^2 = g d R/(2h)
That will tell you the maximum stable velocity, V
Answer This Question
Related Questions
 Physics  A car moves with a speed v on a horizontal circular highway turn of ...
 physics  A car is traveling around a circular banked road without friction ...
 PHYSICS  A car is traveling around a circular banked road without friction ...
 Physics  A car with a mass of 900 kg moves along a road at a 89 km/hour at ...
 physics  A race car starts from rest on a circular track. The car increases its...
 physics  A car starts from rest and travels along a circular track with a ...
 Physics  A car starts from rest and travels along a circular track with a ...
 Physics  A car moves on a level horizontal road in a circle of radius 30.5 m. ...
 Physics  A 1550 kg car moves on a horizontal curved road. If the radius of the...
 PHYSICS  super easy (I think) but I must be missing some concept... A race car ...
More Related Questions