Posted by **Mae** on Sunday, October 5, 2008 at 8:31pm.

1. Some rational functions have asymptotes, others have holes, and some have both. Explain how you can identify, without graphing, which graphical features a rational function will have.

Can someone explain this thoroughly ? I don't understand. thanks in advance.

- Math- Rational Functions -
**Reiny**, Sunday, October 5, 2008 at 8:55pm
the culprit for asymptotes and holes is the denominator.

If for some value of the variable, then denominator is zero, but the numerator is NOT zero, you will have an asymptote.

If for some value of the variable, then denominator is zero, but the numerator is ALSO zero, you will have a hole

e.g. y = (x-2)/(x^2 - 4)

notice this reduces to y = 1/(x+2)

so if x = 2 in the original we get 0/0, so there is a hole at (2,1/4)

if x = -2 we get -4/0 in the original, so x = -2 is an asymptote

- Math- Rational Functions -
**Mae**, Monday, October 6, 2008 at 12:24am
how would we know if it has both holes and asymptotes?

- Math- Rational Functions -
**Enlia**, Monday, October 15, 2012 at 12:30pm
What is the domain and range of 2x^2-18/x^2+3x-10

## Answer this Question

## Related Questions

- Gr.11 - Rational functions graphing. - 1. Identify a rational function whose ...
- math - hello, i have some question about rational functions. 1) are there any ...
- Calculus - We're learning about different kinds of functions and I don't really ...
- Pre-Calculus - I want to learn how to find the domain, holes, x-intercepts, y- ...
- MATH _ GRAPHING RATIONAL FUNCTIONS - When graphing rational functions, how do I ...
- Math Rational Functions-Please Clarify =) - I have a question about the rational...
- Algebra 1 - Which values should I use to graph the rational function y = 1/x-2...
- Algebra 1 - Which values should I use to graph the rational function y = 1/x-2...
- Math (calc) - Given the function: f(x)=x^3(x-2)^2 , on the interval [-1,3] find ...
- ****college algebra…radical functions**** - Create a rational function such that...

More Related Questions