Posted by **George** on Tuesday, September 9, 2008 at 5:22pm.

Consider the function f(x)=sin(1/x)

Find a sequence of x-values that approach 0 such that

(1) sin (1/x)=0 {Hint: Use the fact that sin(pi) = sin(2pi)=sin(3pi)=...=sin(npi)=0}

(2) sin (1/x)=1 {Hint: Use the fact that sin(npi)/2)=1 if n= 1,5,9...}

(3) sin (1/x)=-1

(4) Explain why your answers to any of parts(1-3) show that lim X->0 sin(1/x) does not exist.

Is sin sin (1/x)=0 and sin (1/x)=-1 does not exist.

What is sin (1/x)=1 then.

## Answer This Question

## Related Questions

- Calculus - Consider the function f(x)=sin(1/x) Find a sequence of x-values that ...
- Calculus - Consider the function f(x)=sin(1/x) Find a sequence of x-values that ...
- Calculus - Consider the function f(x)=sin(1/x) Find a sequence of x-values that ...
- algebra - Can someone please help me do this problem? That would be great! ...
- tigonometry - expres the following as sums and differences of sines or cosines ...
- CALCULUS - What is the following limit? lim as n goes to infinity of (pi/n) (sin...
- CALCULUS LIMITS - What is the following limit? lim as n goes to infinity of (pi/...
- Calculus - What is the following limit? lim as n goes to infinity of (pi/n) (sin...
- Trigonometry - Solve the equation for solutions in the interval 0<=theta<...
- TRIG! - Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6...

More Related Questions