Post a New Question


posted by .

(a) Find the indefinite integrals of the following functions.

(i) f (t) = 6 cos(3t) + 5e^−10t

(ii) g(x) = 21-12x^3/ x (x > 0)

(iii) h(u) = cos^2( 1/8 u)

(b) Evaluate: (this big F sign at the start, 5 at the top and 1 at the bottom)
5 1/4x (7 + 6x^2) dx

(i) Write down a definite integral that will give the value of the area under the curve y = x^2 cos(2x) between x = 3/4 pie and x = pie.

(You are not asked to evaluate the integral by hand.)

(ii) find the area described in part (c)(i), giving your
answer correct to three decimal places

for a) ii)

6cos (3t) dx = -4sin (3t) + c
5e^10t dx = 1/5 e^-10t + c

ii) g (x) = 21- 12x^3 / x (x>0)

diverse through by x

g (x) = 21/ x - 12x^3

21/ x - 12x^3 dx = 12Ln x - x^4 + c

iii) h (u) = cos^2 (1/8u)

using the second version of the double angled formula for cos (2delta)

=1/2 cos (2x 1/8 u) + 1/2 du
= 1/2 / 28 sin (2/8u) + 1/2 x + c

= 6/4 sin (2/8u) + 1/2u + c

i don't know whether that's right, and i don't know how to do the rest.

could some body please help me out. thanks!

Answer This Question

First Name:
School Subject:

Related Questions

More Related Questions

Post a New Question