Posted by Timothy on Monday, March 17, 2008 at 6:26pm.
Hello, everyone:
I am working on finding the exact values of angles that are less common and are therefor not found easily on the Unit Circle (at least, they are not labeled). For example, the problem I am asking about is:
10) Find the exact values of the Sine, Cosine and Tangent of 255°. We are supposed to use common angles to assist in our answers (for example, 255° = 300°45°), and use formulas provided to solve them. I can get sine and cosine alright, but the tangent equation is causing a massive migraine:
tan(xy) = (tan(x)tan(y))/(1+tan(x)tan(y))
Using the formula, I get this result:
tan(30045)=(tan(300)tan(45))/(1+tan(300)tan(45))
Here is where I am stuck. Problem is, I did not understand the example in the notes, and the book's examples have virtually nothing to do with the actual exercise problems. So, I am trying to deduce this by logic. The denominator appears to be a conjugate, so I tried multiplying by (1tan(300)tan(45)), and got this result:
[tan(300)+tan^2(300)tan(45)tan(45)tan(300)tan^2(45)]/(1tan^2(300)tan^2(45))
Besides being nightmarishly complex, it also appears to be a dead end. I would appreciate it, greatly, if someone could take their time and slowly explain how to do this portion of my assignment?
With kind regards (except for my math teacher),
Timothy

Trigonometry  Reiny, Monday, March 17, 2008 at 8:54pm
First of all, I would not have used
225 = 300  45 but rather
225 = 180 + 45 and then use
tan(x+y) = (tanx + tany)/(1  tanxtany)
you should know that tan45 = 1 and tan 180 = 0
so tan 225
= tan (180+45)
= (tan180+tan45)/(1tan180tan45)
= 1/(1=0)
= 1
check with a calculator.
try to use combinations that involve angles like 0,30,45,60,90, 180 and 360
to use 300 would mean that you would first of all have to calculate tan 300 as a preliminary problem

Trigonometry  Qun, Saturday, March 22, 2008 at 12:17am
Tim,
This can be done very easily by BASICS of Tangent function:
Tan has a period of PI, which is 180 degree.
When you have a angle like 225, all you need to do is add or subtract multiples of 180(in this case, 150 itself) to get a common angle:
225180 = 45
Tan(45)=1, since 225 is in Quadrant III,
it is positive, so final answer(the whole procedure) is
tan(225)=tan(225180)=tan(45)=1
Contact me for email help
Answer This Question
Related Questions
 math  the point P(x, 2/3) lies on the unit circle and is in quadrant 4. a) ...
 pre cal  Find the exact values for the lengths of the labeled segments a, b and...
 MATH  HOW DO LEAST COMMON MULTIPLES WORK. IT SAYS THERE IS A PROBLEM TO SOLVE ...
 trigonometry  sinA= 3/5 and C=17 Finding a and b Their two triangles and i have...
 Trig  Solve: 3tan^2x1=0. I got +/ (the sq. root of 3)/3 which is correct ...
 math  the point P(1/2, root 3/2) lies on the unit circle. a) sketch the unit ...
 Trigonometry  Suppose that (5/13,y) is a point in Quadrant IV lying on the unit...
 Help finding a good speech topic  I am going to be giving an informative speech...
 Math  Hello everyone. I have one hard math problem and I do not know how to ...
 trigonometry  I need help solving this problem. Question: At what points will ...
More Related Questions