Thursday
March 23, 2017

Post a New Question

Posted by on Sunday, January 13, 2008 at 7:42pm.

Solve: 0 = x3 + 5x2 + 2x – 8

Solve: 0 = x3 – x2 – 11x – 10

  • Algebra 2 - , Sunday, January 13, 2008 at 7:57pm

    use your graphing calculator or plot it on a graph

  • Algebra 2 - , Sunday, January 13, 2008 at 8:05pm

    Use the Rational Roots Theorem.

    Suppose

    a x^n + b x^(n-1) + .... e = 0

    If x is a rational number of the form p/q with p and q integers that don't have factors in common (i.e. the fraction p/q is simplified as much as possible), then p must divide e and q must divide a.

    In case of the equation:

    x^3 + 5x^2 + 2x – 8 = 0

    this means that x = integer that divides 8. x = 1, x= -2 and x = -4 are solutions.

  • Algebra 2 - , Sunday, January 13, 2008 at 8:20pm

    x^3 – x^2 – 11x – 10 = 0

    Assuming again that the roots are rational numbers, it follows from the Rational Roots Theorem that the roots are integers that divide the number 10.

    So, the only possible rational roots are:

    x = -10, x = -5, x = -2, x = -1, x = 1, x = 2, x = 5, x = 10

    Only x = -2 satisfies the equation.

    Factoring the polynomial gives:

    x^3 – x^2 – 11x – 10 =

    (x+2)(x^2 -3x - 5)

    The zeroes of the quadratic factor are the other zeroes (you already know that they cannot be rational).

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question