Monday
March 27, 2017

Post a New Question

Posted by on .

f(x) = (ax+b)/(x^2 - c)
i) the graph of f is symmetric about the y-axis
ii) limit as x approaches 2+ of f(x) is positive infinity
iii) f'(1) = -2

Determine the values of a, b, c


I got that c = 4 from the first i). I'm stuck on the second one because
f(x) = f(-x)
(ax+b)/(x^2 - c) = (-ax+b)/(x^2 - c)
ax+b = -ax+b
1=-1 ????

  • Calculus - ,

    If it is symettric, then a has to be zero. If a is not zero, then it is an odd function. a being zero satisfies your solution.

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question