Dan
posted by Chem on .
N2 + 3H2 > 2NH3
At 25°C (delta)Ho = 92.22 kJ and (delta)So = 198.53 J/K. Using this information, calculate the equilibrium constant for the reaction at 2.43x10^2°C. (R = 8.314 J/K)
Apparently the way I'm doing it is wrong:
I divide 198.53 by 1000 then multiply by 298 to get delta(S). Then I subtract this from delta(H) to get delta(G). Then I multiply 516 with .008314... I take this answer and divide delta(G) by it, then multiply by 1. I take this to the e power... Then I use the equation Kc = (RT)^n * Kp to get the equilibrium constant. However my answer is still wrong.

or mike or whomever,
Two points:
1. How do you know to calculate Kc instead of Kp? The problem doesn't specify which. Since this is a gaseous reaction, Kp may be what they are looking for.
2. Have you tried the van't Hoff equation. You have delta H and one T so the van't Hoff equation can be used to calculate K at any other T.