Posted by Laura on Thursday, November 1, 2007 at 8:20pm.
I need to verify one of my answers quickly...the problem is:
The mean annual salary for classroom teachers is $43,658. Assume a standard deviation of $8000.
1) Determine the sampling distribution of the sample mean for a sample of size 256. Interpret your answer in terms of the distribution of of all possible sample mean salaries for samples of 256 teachers.
2) Determine the percentage of all samples of 256 public school teachers that have mean salaries within $1000 of the population mean salary of $43,658. Interpret your answer in terms of sampling error.
Are my answers correct? :
1)SE within samples = 8,000/√256 =500
2) 42.1% of samples are within $500 of the mean $8,000.
or...
is it 84.2% that're 1/in $1000?
or...
am I way off?

Statistics quick! Is this right?  economyst, Friday, November 2, 2007 at 8:48am
1) looks correct
For 2) You have an standard error of 500, and are asked what is likelihood of similar sample being within 1000 or 2.0 standard deviations away from the mean. Look up 2.0 in your cumulative normal distribution table (probably in the back of your stats book). I get .9772  meaning 97.72% of such samples with be within $1000 of the mean of $43,658
Answer This Question
Related Questions
 Statistics PEASE help!  Subjects Art Business Computers English Foreign ...
 Math (Statistic)  Considered the sampling distribution of a sample mean ...
 Statistics  The following is a histogram (right skewed) of the first ten terms ...
 Sampling Distribution Complete solutions and illus  Sampling Distribution ...
 Math Statistics  A random sample of size 36 is to be selected from a ...
 statistics  An SRS of size n is taken from a large population whose ...
 Statistics  1. The scores of students on the ACT college entrance examination ...
 statistics  what are the mean and standard deviation of a sampling distribution...
 statistics  For an IQ test, we know the population mean = 100 and the standard ...
 Stat  An SRS of size n is taken from a large population whose distribution of ...
More Related Questions