Saturday
March 25, 2017

Post a New Question

Posted by on .

please help, i procrastinated and now this is due tomorrow!!


A tangent line is drawn to the hyerbola xy=c at a point P.

1) show that the midpoint of the line segment cut from the tangent line by the coordinate axes is P.

2) show that the triangle formed by the tangent line and the coordinate axes always has the same area, no matter where P is located on the hyperbola.

  • math repost!! - ,

    let p(a,c/a) be the point on the hyperbola

    for xy=c
    dy/dx = -y/x, so at P the slope = -c/a^2

    equation of tangent line:
    y - c/a = -c/a^2(x - a) which when simplified is
    cx - a^2y=-2ac

    for x-intercept, let y=0, then x = 2a
    for y-intercept, let x=0, then y = 2c/a

    1. take the midpoint of (0,2c/a) and (2a,0) and what do you get????

    2. aren't your x and y intercepts the base and height of your triangle??
    take area = 1/2 base*height
    = .....
    = c which is the constant of the original equation!!!

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question