Post a New Question


posted by on .

A golf ball released from a height of 1.80 m above a concrete floor, bounces back to a height of 1.06 m. If the ball is in contact with the floor for 4.62 ms, what is the magnitude of the average acceleration a of the ball while it is in contact with the floor?

Quidditch told me that the first steps would be to find the velocity as the ball first makes contact with the floor, and the velocity as the ball leaves the floor. But I'm still unsure how to do this...

  • Physics - ,

    the velocity when the ball first contacts the floor is:
    V1 = sqrt(2*g*s)
    V1= sqrt(2 * 9.8(m/s^s) * 1.8m)

    The velocity when the ball just leaves (rebounds) works the same way except for the distance sign
    V2 = sqrt(2 * 9.8(m/s^2) * (-1.06m))

    V1 - V2= delta V (you will be subtracting a negative number remember for V2.

    It is given that delta t is 4.62ms

    acceleration = (delta v) / (delta t)

    Don't forget to change the ms time to seconds.

  • Physics - ,


Answer This Question

First Name:
School Subject:

Related Questions

More Related Questions

Post a New Question