Posted by **COFFEE** on Monday, June 18, 2007 at 10:41pm.

The hemispherical tank shown is full of water. Given that water weighs 62.5 lb/ft3, find the work required to pump the water out of the tank.

----------

What is shown is just the tank (a hemisphere) with a radius of 5 ft.

----------

First I calculated the Volume of the hemisphere, V = (2/3)*pi*r^3

V = (2/3)*pi*125 = (250/3)*pi

Then I took the integral of: Volume*5y*dy from 0 to 5.

Which equals: ((250/3)*pi)*(5/2)y^2 evaluated at 5 and 0.

I came up with 16362.5 ft*lb.

----------

Am I using the wrong method?

The work required depends upon where the water is extracted. I assume you are pumping out the top.

I don't see why you claim that the energy is

Volume*5y*dy from 0 to 5

The work required is the weight of each differential slab of height dy, multiplied by the distance it must be lifted, 5 - y, integrated from 0 to 5. The area of each slab is different. It depends upon y.

## Answer This Question

## Related Questions

- Calculus - The hemispherical tank shown is full of water. Given that water ...
- Calculus - The tank shown is full of water. Given that water weighs 62.5 lb/ft3...
- Math - Calculus 2 - An underground tank full of water has the following shape: ...
- Calculus - The tank shown is full of water. Given that water weighs 62.5 lb/ft3...
- Calculus 2 - An underground tank full of water has the following shape: ...
- Calculus - A cylindrical water tank has a radius of 2 feet and a height of 6.0 ...
- Calculus 2 / Physics - An underground tank full of water has the following shape...
- Calculus - A tank in the shape of a right circular cylinder is filled with water...
- calculus - A tank in the shape of a right circular cylinder is filled with water...
- Calculus - A tank in the shape of a right circular cylinder is filled with water...

More Related Questions