Posted by **COFFEE** on Monday, May 28, 2007 at 9:33pm.

How would I solve the following integral with the substitution rule?

Integral of: [(x^3)*(1-x^4)^5]dx

Put 1-x^4 = y

Then -4x^3 dx = dy

Integral is then becomes:

Integral of -1/4 y^5 dy

ok, thanks a lot! I got it now.

## Answer This Question

## Related Questions

- calc asap! - can you help me get started on this integral by parts? 4 S sqrt(t) ...
- Calculus II/III - A. Find the integral of the following function. Integral of (x...
- Calculus - If f(x) and g(x) are continuous on [a, b], which one of the following...
- Calculus - Find the volume of the solid whose base is the region in the xy-plane...
- math - How do I derive the secant reduction rule? Integral (sec x)^n dx = ...
- Quick calc question - If f(x) and g(x) are continuous on [a, b], which one of ...
- math - Evaluate the following indefinite integral by using the given ...
- math - Evaluate the following indefinite integral by using the given ...
- Calc 121 - How do you integrate using substitution: the integral from 1 to 3 of...
- Calculus - Let f(x)=cosxsqrt(1+sinx). A. Let F(x)=the integral of f(x)dx and F(0...

More Related Questions